Customized k-nearest neighbourhood analysis in the management of adolescent idiopathic scoliosis using 3D markerless asymmetry analysis
Maliheh Ghaneei,
Ronald Ekyalimpa,
Lindsey Westover,
Eric C. Parent and
Samer Adeeb
Computer Methods in Biomechanics and Biomedical Engineering, 2019, vol. 22, issue 7, 696-705
Abstract:
Adolescent Idiopathic Scoliosis (AIS) is a 3D spinal deformity characterized by curvature and rotation of the spine. Markerless surface topography (ST) analysis has been proposed for diagnosing and monitoring AIS to reduce the X-ray radiation exposure to patients. This method captures scans of the cosmetic deformity of the torso using visible, radiation-free light. The asymmetry analysis of the torso, represented as a deviation contour map with deviation patches outlining the areas of cosmetic asymmetries, has previously been shown to predict the severity and progression of the condition in comparison with radiographs, by using classification trees. While the classification results were promising, it was reported that some mild curves were erroneously diagnosed. Furthermore, this approach is highly sensitive to threshold values selected in the decision trees. Therefore, this study aims to define a custom Neighbourhood Classifier algorithm for AIS classification to improve the accuracy, sensitivity, and specificity of predicting curve severity and curve progression in AIS. Curve severity was predicted with 80% accuracy (sensitivity = 81%; specificity = 79%) for thoracic-thoracolumbar curves and 72% (sensitivity = 93%; specificity = 53%) for lumbar curves. This represents an improvement over the previous method with curve severity accuracies of 77% and 63% for thoracic-thoracolumbar and lumbar curves, respectively. Additionally, curve progression was predicted with 93% accuracy (sensitivity = 83%; specificity = 95%) representing a substantial improvement over the previous method with an accuracy of 59%. The current method has shown the potential to further reduce radiation exposure for AIS patients by avoiding X-rays for mild and non-progressive curves identified using ST analysis.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2019.1584795 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:22:y:2019:i:7:p:696-705
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2019.1584795
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().