Multi-objective reliability based design optimization using Kriging surrogate model for cementless hip prosthesis
Khalil Dammak and
Abdelkhalak El Hami
Computer Methods in Biomechanics and Biomedical Engineering, 2020, vol. 23, issue 12, 854-867
Abstract:
Design optimization for cementless hip prosthesis signifies one of the key topics of research to improve its performances. However, majority of the studies have not considered the presence of uncertainties while it has been shown that a deterministic optimization leads to an unreliable design. In this paper, a multi-objective reliability-based design optimization (MORBDO) procedure is proposed for cementless hip prosthesis design. The proposed methodology consists in combining the finite element simulation (FES), surrogating techniques and optimization procedure. The constructed meta-models are validated and compared using different measures such as error predictions and cross-validation (CV). The results show that the constrained non-dominated sorting genetic algorithm (C-NSGA-II) coupled with the hybrid method (HM) was capable to generate well-distributed reliable Pareto solutions.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1768247 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:23:y:2020:i:12:p:854-867
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2020.1768247
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().