Biomechanical effects of screw orientation and plate profile on tibial condylar valgus osteotomy - Finite-element analysis
Chih-Ting Cheng,
Chu-An Luo and
Yi-Chih Chen
Computer Methods in Biomechanics and Biomedical Engineering, 2020, vol. 23, issue 12, 906-913
Abstract:
Tibial condylar valgus osteotomy (TCVO) is a type of open wedge high tibial osteotomy for correcting intra-articular deformities of medial knee osteoarthritis. However, there are no implant design and related biomechanical investigations specifically for TCVO. This study aims to investigate the effects of the proximal screw direction and plate profile on the biomechanical behaviors of the TCVO construct. Based on computed tomography images, the tibia model with TCVO was simulated. Four variations (straight and contoured plate profile × convergent and divergent proximal screw direction) with two loading conditions (compressive loads and torsional load) were compared by finite-element method. Fracture risk and construct stability were chosen as the comparison indices. For both loading conditions, the fracture risk of screw, plate and bone was the lowest in straight plate with divergent screw direction (SD), while contoured plate with convergent screw direction (CC) was the highest. Similar results were found in construct stability, SD allowed the smallest micromotions of the L-shaped opening gap, but CC allowed the highest. Divergent screw direction can decrease fracture risk of all components and provide better construct stability, while contoured plate profile seems like to have converse effects. If stability is the major concern, straight plate with divergent screw is recommended for patients with heavy load demands. Contoured plate may be suitable for skinny patients that can reduce the soft tissue irritation.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1772763 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:23:y:2020:i:12:p:906-913
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2020.1772763
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().