EconPapers    
Economics at your fingertips  
 

A continuum thermomechanical model for the electrosurgery of soft hydrated tissues using a moving electrode

Wafaa Karaki, Rahul, Carlos A. Lopez, Diana-Andra Borca Tasciuc and Suvranu De

Computer Methods in Biomechanics and Biomedical Engineering, 2020, vol. 23, issue 16, 1317-1335

Abstract: Electrosurgical radio-frequency heating of tissue is widely applied in minimally invasive surgical procedures to dissect tissue with simultaneous coagulation to obtain hemostasis. The tissue effect depends on the cumulative heating that occurs in the vicinity of the moving blade electrode. In this work, a continuum thermomechanical model based on mixture theory, which accounts for the multiphase nature of soft hydrated tissues and includes transport and evaporation losses, is used to capture the transient heating effect of a moving electrode. The model takes into account the dependence of electrical conductivity and the evaporation rate on the water content in the tissue, as it changes in response to heating. Temperature prediction is validated with mean experimental temperature measured during in situ experiments performed on porcine liver tissue at different power settings of the electrosurgical unit. The model is shown to closely capture the temperature variation in the tissue for three distinct scenarios; with no visible cutting or coagulation damage at a low 10 W power setting, with coagulation damage but no tissue cutting at an intermediate power setting of 25 W, and with both coagulation and tissue cutting at a higher power setting of 50 W. Furthermore, an Arrhenius model is shown to capture tissue damage observed in the experiments. Increase in applied power was found to correlate with tissue cutting and concentrated damage near the electrode, but had little effect on the observed coagulation damage width. The proposed model provides, for the first time, an accurate tool for predicting temperature rise and evolving damage resulting from a moving electrode in pure-cut electrosurgery.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1798415 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:23:y:2020:i:16:p:1317-1335

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2020.1798415

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:23:y:2020:i:16:p:1317-1335