EconPapers    
Economics at your fingertips  
 

A biomechanical model of the pathological aortic valve: simulation of aortic stenosis

Marcos Loureiro-Ga, Cesar Veiga, Generosa Fdez-Manin, Victor Alfonso Jimenez, Francisco Calvo-Iglesias and Andres Iñiguez

Computer Methods in Biomechanics and Biomedical Engineering, 2020, vol. 23, issue 8, 303-311

Abstract: Aortic stenosis (AS) disease is a narrowing of the aortic valve (AV) opening which reduces blood flow from the heart causing several health complications. Although a lot of work has been done in AV simulations, most of the efforts have been conducted regarding healthy valves. In this article, a new three-dimensional patient-specific biomechanical model of the valve, based on a parametric formulation of the stenosis that permits the simulation of different degrees of pathology, is presented. The formulation is based on a double approach: the first one is done from the geometric point of view, reducing the effective ejection area of the AV by joining leaflets using a zipper effect to sew them; the second one, in terms of functionality, is based on the modification of AV tissue properties due to the effect of calcifications. Both healthy and stenotic valves were created using patient-specific data and results of the numerical simulation of the valve function are provided. Analysis of the results shows a variation in the first principal stress, geometric orifice area, and blood velocity which were validated against clinical data. Thus, the possibility to create a pipeline which allows the integration of patient-specific data from echocardiographic images and iFR studies to perform finite elements analysis is proved.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1720001 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:23:y:2020:i:8:p:303-311

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2020.1720001

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:23:y:2020:i:8:p:303-311