Finite element analysis of fixed bone plates over fractured femur model
Harbhajan Ahirwar,
Vijay Kumar Gupta and
Himansu Sekhar Nanda
Computer Methods in Biomechanics and Biomedical Engineering, 2021, vol. 24, issue 15, 1742-1751
Abstract:
The development of prosthetic bioimplants for fracture fixation using curved bone plates has been used as an established procedure for treatment in orthopedic. Here-in, we propose a novel curved bone plate fixation strategy to fix the designed biocompatible plates in different fracture models. Various biocompatible metallic biomaterials such as Ti-alloy (Ti-6Al-4V), stainless steel (SS 316L), and Co-alloy (Co-Cr) were created in SOLID works and used for the design of the bone plates. The typical fracture models (transverse and oblique) were created over a standard femur bone (models created using Materialize MIMIC/MAGIC) and two bone plates of similar materials were fixed side-by-side over the fractured femur using the screws made from Ti-6Al-4V. The finite element analysis (FEA) was carried out to evaluate the interface deformation, stress, and strain generated at the bone–bioimplant interface. The results from FEA demonstrated that the interface deformation and stress for a bone–bioimplant assembly are significantly reduced when natural anisotropic condition (functionally graded materials properties) of the human femur was well considered. Based on the analysis, Ti-6AL-4V and SS 316L were found as the best fit metallic biomaterials for the design and development of bone plate prosthetic bioimplants for fixation of an oblique fracture and transverse fracture respectively.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1918123 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:24:y:2021:i:15:p:1742-1751
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2021.1918123
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().