EconPapers    
Economics at your fingertips  
 

Numerical analysis of the effects of ossicular chain malformations on bone conduction stimulation

Yu Zhao, Wen Liu, Houguang Liu, Jianhua Yang, Lei Zhou and Xinsheng Huang

Computer Methods in Biomechanics and Biomedical Engineering, 2021, vol. 24, issue 8, 817-830

Abstract: To assess the effects of ossicular chain malformations on the performance of bone conduction hearing aids, a human ear finite-element model that includes an ear canal, a middle ear, and a spiral cochlea incorporating the third windows was established. This finite element model was built based on micro-computed tomography scanning and reverse modelling techniques, and the reliability of the finite element model was verified by comparison with reported experimental data. Based on this model, two main types of ossicular chain malformations, i.e., the incudostapedial disconnection and the ossicles fixation, were simulated, and their influences on bone conduction were analyzed by comparing the trans-cochlear-partition differential pressures. The results indicate that the incudostapedial disconnection mainly deteriorates the bone conduction response at mid frequencies. The stapes fixation has the largest effect among the ossicles fixation with the bone conduction stimulation, which also mainly decreases the mid-frequency response of the bone conduction, especially at 2 kHz. As the speech intelligibility has the most important frequency range at the range between 1 kHz and 2.5 kHz, the mid-frequency deterioration caused by ossicular chain malformations should be compensated in optimizing the design of the bone conduction hearing aids. For treating patients with the ossicular chain malformations, especially for the patients who suffer from the stapes fixation, the output of bone conduction hearing aids’ actuator in the middle frequency band should be improved.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1853107 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:24:y:2021:i:8:p:817-830

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2020.1853107

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:24:y:2021:i:8:p:817-830