Finite element method based parametric study of Gastrocnemius-soleus recession: implications to the treatment of midfoot-forefoot overload syndrome
Miko Lin Lv,
Haowei Zhang,
Liang Chen,
Ying Liu,
Fei Wang,
Duo Wai-Chi Wong,
Li Sun and
Ming Ni
Computer Methods in Biomechanics and Biomedical Engineering, 2021, vol. 24, issue 8, 913-921
Abstract:
Gastrocnemius-soleus recession has been used to treat midfoot-forefoot overload syndrome and plantar fasciitis induced by equinus of the ankle joint. A controlled and selective amount of recession is imperative to maintain muscle strength and stability. The objective of this study was to conduct a parametric study to quantify the relationship between the level of recession and plantar fascia stress. A finite element model of the foot-ankle-shank complex was reconstructed from magnetic resonance and computed tomography images of a 63-year-old normal female. The model was validated by comparing modeled stresses to the measured plantar pressure distribution of the model participant during balanced standing. The midstance and push-off instants of walking stance were simulated with different levels and combinations of gastrocnemius-soleus recession resembled by different amounts of muscle forces. Halving the muscle forces at midstance reduced the average plantar fascia stress by a quarter while reducing two-third of the muscle forces at push-off reduced the average fascia stress by 18.2%. While the first ray of the plantar fascia experienced the largest stress among the five fasciae, the stress was reduced by 77.8% and 16.9% when the load was halved and reduced by two-third at midstance and push-off instants, respectively. Reduction in fascia stress implicates a lower risk of plantar fasciitis and other midfoot-forefoot overload syndromes. The outcome of this study can aid physicians to determine the amount of gastrocnemius-soleus recession towards patients with vdifferent levels of plantar fascia overstress. A detailed three-dimensional modelling on the plantar fascia is warranted in future study.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1858817 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:24:y:2021:i:8:p:913-921
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2020.1858817
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().