On the molecular structure of Remdesivir for the treatment of Covid-19
S. M. Sheikholeslami,
A. Jahanbani and
Z. Shao
Computer Methods in Biomechanics and Biomedical Engineering, 2021, vol. 24, issue 9, 995-1002
Abstract:
(SARS-CoV-2), was first identified in December 2019 as the cause of a respiratory illness designated coronavirus disease 2019, or Covid-19. Several therapeutic agents have been evaluated for the treatment of Covid-19, but none have yet been shown to be efficacious. Remdesivir (GS-5734), an inhibitor of the viral RNA-dependent, RNA polymerase with inhibitory activity against SARS-CoV and the Middle East respiratory syndrome (MERS-CoV), was identified early as a promising therapeutic candidate for Covid-19 because of its ability to inhibit SARS-CoV-2 in vitro. Besides, in nonhuman primate studies, remdesivir initiated 12 hours after inoculation with MERS-CoV9,10 reduced lung virus levels and lung damage. In the field of Medical Science, concerning the definition of the topological index on the molecular structure and corresponding medical, biological, chemical, pharmaceutical properties of drugs can be studied by the topological index calculation. In this paper, we compute some of the general temperature topological properties of remdesivir that the results in this paper may be useful in finding new drug and vaccine for the treatment and prevention of COVID-19.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2020.1863380 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:24:y:2021:i:9:p:995-1002
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2020.1863380
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().