MKELM: Mixed Kernel Extreme Learning Machine using BMDA optimization for web services based heart disease prediction in smart healthcare
Adlin Sheeba,
S. Padmakala,
C. A. Subasini and
S. P. Karuppiah
Computer Methods in Biomechanics and Biomedical Engineering, 2022, vol. 25, issue 10, 1180-1194
Abstract:
In recent years, cardiovascular disease becomes a prominent source of death. The web services connect other medical equipments and the computers via internet for exchanging and combining the data in novel ways. The accurate prediction of heart disease is important to prevent cardiac patients prior to heart attack. The main drawback of heart disease is delay in identifying the disease in the early stage. This objective is obtained by using the machine learning method with rich healthcare information on heart diseases. In this paper, the smart healthcare method is proposed for the prediction of heart disease using Biogeography optimization algorithm and Mexican hat wavelet to enhance Dragonfly algorithm optimization with mixed kernel based extreme learning machine (BMDA–MKELM) approach. Here, data is gathered from the two devices such as sensor nodes as well as the electronic medical records. The android based design is utilized to gather the patient data and the reliable cloud-based scheme for the data storage. For further evaluation for the prediction of heart disease, data are gathered from cloud computing services. At last, BMDA–MKELM based prediction scheme is capable to classify cardiovascular diseases. In addition to this, the proposed prediction scheme is compared with another method with respect to measures such as accuracy, precision, specificity, and sensitivity. The experimental results depict that the proposed approach achieves better results for the prediction of heart disease when compared with other methods.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2034795 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:25:y:2022:i:10:p:1180-1194
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2022.2034795
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().