A new variant of deep belief network assisted with optimal feature selection for heart disease diagnosis using IoT wearable medical devices
Fathima Aliyar Vellameeran and
Thomas Brindha
Computer Methods in Biomechanics and Biomedical Engineering, 2022, vol. 25, issue 4, 387-411
Abstract:
In this paper, the information related to heart disease using IoT wearable devices is collected from any benchmark site, which is publicly available. With the collected data, feature extraction process is performed initially, in which heart rate, zero crossing rate, and higher order statistical features like standard deviation, median, skewness, kurtosis, variance, mean, peak amplitude, and entropy are extracted. For acquiring most significant features, the optimal feature selection process is implemented. As a novel contribution, the feature selection process is done by the hybrid optimization algorithm called PS-GWO by integrating GWO and PSO. Next, the extracted features are subjected to a famous deep learning algorithm named modified DBN, in which the activation function and number of hidden neurons is optimized using the same developed hybrid algorithm to improve the heart diagnosis accuracy. From the analysis, for the test case 1, the accuracy of the developed PS-GWO-DBN is 60%, 52.5%, 35% and 35% increased than NN, KNN, SVM, and DBN. For test case 2, the accuracy of the proposed PS-GWO-DBN is 26%, 24%, 21.6% and 17% increased than NN, KNN, SVM, and DBN, respectively. The accuracy of the designed PS-GWO-DBN is 26% advanced than NN, 24% advanced than KNN, 21.6% advanced than SVM and 17% advanced than DBN for test case 3. Thus, the proposed heart disease prediction model using PS-GWO-DBN performs better than other classifiers.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1955360 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:25:y:2022:i:4:p:387-411
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2021.1955360
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().