EconPapers    
Economics at your fingertips  
 

Longitudinally centered embossed structure in the locking compression plate for biodegradable bone implant plate: a finite element analysis

Girish Chandra, Ajay Pandey and Nilesh Tipan

Computer Methods in Biomechanics and Biomedical Engineering, 2022, vol. 25, issue 6, 603-618

Abstract: In the current revolution of internal fixation implant in orthopaedics, a biodegradable implant is the most awaited and exceptional medical device where biodegradable material has paid more attention to the success of a biodegradable implant than the design of a biodegradable bone implant plate. By far, LCP is the most traditionally used implant plate (using non-biodegradable material) because of its experimental success, but not with qualified biodegradable material (Mg-alloy). This lack of mechanical performance is a major drawback that can be rectified by better structural design. This will help avoid few other problems as well. Therefore, with proper consideration, the LCP has been added to a semicircular filleted longitudinally centered embossed (LCE) structure to enhance overall mechanical performance that can help emphasize mechanical support even after continuous degradation when applied in a physiological environment. For mechanical verification of this advanced design of biodegradable bone implant plate, four-point bending test (4PBT) and axial compression test (ACT) have been performed using FEM on LCELCP, LCP, continuously degraded (CD)-LCELCP, and CD-LCP. LCELCP showed reduced stress of about 22% and 10% in 4PBT and ACT, respectively, compared to LCP. CD-LCELCP is safe during ACT over 6 months of continuous degradation when the degradation rate is assumed to be 4 mm/year. These results also ensured accuracy using mesh convergence and also mesh checked for quality assurance. Overall, LCELCP can be considered as a biodegradable bone implant plate because of its superior performance, if its ultimate validation is carried out through animal/human trials as future work.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1970145 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:25:y:2022:i:6:p:603-618

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2021.1970145

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:25:y:2022:i:6:p:603-618