EconPapers    
Economics at your fingertips  
 

An empirical comparison of machine learning algorithms for the classification of brain signals to assess the impact of combined yoga and Sudarshan Kriya

Himika Sharma, Rajnish Raj and Mamta Juneja

Computer Methods in Biomechanics and Biomedical Engineering, 2022, vol. 25, issue 7, 721-728

Abstract: Today’s fast paced life reports so much stress among people that it may lead to various psychological and physical illnesses. Yoga and meditation are the best strategies to reduce the effect of stress on physical and mental level without any side-effects. In this study, combined yoga and Sudarshan Kriya (SK) has been used as an alternative and complementary therapy for the management of stress. The aim of the study is to find a method to classify the meditator and non-meditator states with the best accuracy. The 50 subjects have been participating in this study and divided into two groups, i.e. study and control group. The subjects with regular practice of Yoga and SK are known as meditators and the ones without any practice of yoga and meditation were known as non-meditators. Electroencephalogram (EEG) signals were acquired from these both groups before and after 3 months. The statistical parameters were computed from these acquired EEG signals using Discrete Wavelet Transform (DWT). These extracted statistical parameters were given as input to the classifiers. The decision tree, discriminant analysis, logistic regression, Support Vector Machine (SVM), Weighted K- Nearest Neighbour (KNN) and ensemble classifiers were used for classification of meditator and non- meditator states from the acquired EEG signals. The results have demonstrated that the SVM method gives the highest classification accuracy as compared to other classifiers. The proposed method can be used as a diagnosis system in clinical practices.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1975682 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:25:y:2022:i:7:p:721-728

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2021.1975682

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:25:y:2022:i:7:p:721-728