EconPapers    
Economics at your fingertips  
 

Clinical risk assessment of chronic kidney disease patients using genetic programming

Arvind Kumar, Nishant Sinha, Arpit Bhardwaj and Shivani Goel

Computer Methods in Biomechanics and Biomedical Engineering, 2022, vol. 25, issue 8, 887-895

Abstract: Chronic kidney disease (CKD) is one of the serious health concerns in the twenty-first century. CKD impacts over 37 million Americans. By applying machine learning (ML) techniques to clinical data, CKD can be diagnosed early. This early detection of CKD can prevent numerous loss of life. In this work, clinical data set of 400 patients, available on the UCI repository, are taken. Unfortunately, this data set doesn’t have an equal distribution of CKD and Non-CKD samples. This imbalanced nature of data highly influences the learning capabilities of classifiers. Genetic Programming (GP) is an ML technique based on the evolution of species. GP with standard fitness function, also impacted by this imbalanced nature of data. A new Euclidean distance-based fitness function in GP is proposed to handle this imbalanced nature of the data set. To compare the robustness of the proposed work, other classification techniques, K-nearest neighborhood (KNN), KNN with particle swarm optimization (PSO), and GP with the standard fitness function, is also applied. For ten-fold cross-validation, the KNN shows an accuracy of 83.54% with an AUC value of 0.69, the PSO-KNN shows an accuracy of 96.79% with an AUC value of 0.94, and the GP, with the newly proposed fitness function, supersedes KNN and PSO-KNN and shows the accuracy of 99.33% with an AUC value of 0.99.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2021.1985476 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:25:y:2022:i:8:p:887-895

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2021.1985476

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:25:y:2022:i:8:p:887-895