The influencing mechanism of iliac vein stent implantation for hemodynamics at the bifurcation
Changsheng Li,
Haiquan Feng,
Xiaotian Wang and
Yonggang Wang
Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 12, 1452-1461
Abstract:
In the intervention with stent implantation for iliac vein compression syndrome (IVCS), it remains unclear about the influencing mechanism of the structure and implantation position of the stent for the hemodynamics of the affected site. In this paper, an iliac vein model was established. Besides, the computational fluid dynamics (CFD) was utilized to analyze the time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) in a sine period after stent implantation based on the three different implantation positions of two iliac vein stents (the left branch outlet, contralateral disturbed flow and main iliac vein). The influence of the structure and implantation position of the stent on blood flow was revealed. These findings were verified by the particle image velocimetry (PIV) experiment. The results indicated that the maximum blood flow velocity of the iliac vein decreased after the stent implantation. Among the three positions, the influence of stent implantation on the iliac vein blood flow was the least when the stent implantation was performed at the left branch outlet; the influence of stent implantation on the iliac vein blood flow was the greatest when the stent implantation was performed at the contralateral disturbed flow. Moreover, there was little influence of Venastent implantation on the blood flow. These results could provide a scientific foundation for implantation treatment and stent design related to IVCS.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2120352 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:12:p:1452-1461
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2022.2120352
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().