EconPapers    
Economics at your fingertips  
 

Imbalanced medical disease dataset classification using enhanced generative adversarial network

T. Suresh, Z. Brijet and T. D. Subha

Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 14, 1702-1718

Abstract: In general, the imbalanced dataset is a major issue in health applications. The medical data classification faces the imbalanced count of data samples, here at least one class forms only a very small minority of the data, but it is a drawback of most of the machine learning algorithms. The medical datasets are mostly imbalanced in its class labels. When the dataset is imbalanced, the existing classification algorithms typically perform badly on minority class cases. To deal the class imbalance issue, an enhanced generative adversarial network (E-GAN) is proposed in this article. The proposed approach is the consolidation of deep convolutional generative adversarial network and modified convolutional neural network (DCG-MCNN). Initially, the imbalanced data is converted into balanced data in pre-processing process. Data preprocessing comprise of data cleaning, data normalization, data transformation and data reduction using Radius Synthetic minority oversampling technique (RSMOTE) method. The DCG is considered for balancing the dataset generating extra samples under training dataset. This training dataset based, the medical disease classification is enhanced by modified CNN diagnosis model. The proposed system performed is executed in MATLAB. The performance analysis is implemented under the Breast Cancer Wisconsin Dataset that provides the higher maximum geometry mean (MGM) of 8.686, 2.931 and 5.413%, and higher Matthews’s correlation coefficient (MCC) of 9.776, 1.841 and 5.413% compared to the existing methods.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2134729 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:14:p:1702-1718

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2022.2134729

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:14:p:1702-1718