EconPapers    
Economics at your fingertips  
 

A 3D finite element model of uterus support to evaluate mechanisms underlying uterine prolapse formation

Jialan Chen, Junfeng Zhang and Cuige Yu

Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 15, 1930-1939

Abstract: Uterine prolapse (UP) seriously affects the quality of life and physical and mental health of elderly women, which can easily be caused by ligament injury or intra-abdominal pressure (IAP) increasing. The objective of this manuscript was to study the influence of IAP and ligament injury on uterus and its surrounding ligaments using the finite element method. First, the three-dimensional (3D) models of retroverted uterus and its surrounding ligaments were established, and loads and constraints were set in ABAQUS software, then the stress and deformation of uterine ligaments and uterine displacement were calculated. The study found that the uterine displacement and the stress and deformation of the ligaments increased when IAP and ligament injury increased alone or simultaneously. Then, the stress and sensitivity of the ligaments to the changes of IAP or ligament injury were in the order of uterosacral ligament (USL), broad ligament (BL), cardinal ligament (CL) and round ligament (RL), while the deformation and sensitivity the changes of the ligaments were in the order of BL > RL > USL > CL. Moreover, the ligament injury had a greater influence on the uterus and uterine ligaments than IAP. The results of this study can provide guidance for optimization of surgical scheme of uterus prolapsed in clinic and exploration of pathogenesis.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2159759 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:15:p:1930-1939

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2022.2159759

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:15:p:1930-1939