EconPapers    
Economics at your fingertips  
 

A novel model based on a 1D-ResCNN and transfer learning for processing EEG attenuation

Wenlong Wang and Baojiang Li

Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 16, 1980-1993

Abstract: EEG signals are valuable signals in clinical medicine, brain research, and the study of neurological illnesses. However, EEG signal attenuation may occur at any time from signal generation through BCI device acquisition due to defects in the brain–computer interface (BCI) devices, restrictions in the dynamic network, and individual variations across the subjects. The attenuation of EEG data will alter the data distribution and lead to information fuzziness, substantially influencing subsequent EEG research. A model based on one-dimensional residual convolutional neural networks (1D-ResCNN) and transfer learning is proposed in this article to reduce the negative impacts of EEG attenuation. An end-to-end manner maps an attenuated EEG signal to a normal EEG signal. The structure employs a multi-level residual connection structure with varying weight coefficients, transferring characteristics from the bottom to the top of the convolutional neural network, enhancing feature learning. In addition, we initialize the subsequent denoising model using the transfer learning method. The combination of these two networks can well solve the attenuation problem of EEG signals. Experiments are carried out using the EEG-denoisenet data set. According to the findings, the model can yield a clear waveform with a decent SNR and RRMSE value.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2162339 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:16:p:1980-1993

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2022.2162339

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:16:p:1980-1993