The measles epidemic model assessment under real statistics: an application of stochastic optimal control theory
Peijiang Liu,
Rukhsar Ikram,
Amir Khan and
Anwarud Din
Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 2, 138-159
Abstract:
A stochastic epidemic model with random noise transmission is taken into account, describing the dynamics of the measles viral infection. The basic reproductive number is calculated corresponding to the stochastic model. It is determined that, given initial positive data, the model has bounded, unique, and positive solution. Additionally, utilizing stochastic Lyapunov functional theory, we study the extinction of the disease. Stationary distribution and extinction of the infection are examined by providing sufficient conditions. We employed optimal control principles and examined stochastic control systems to regulate the transmission of the virus using environmental factors. Graphical representations have been offered for simplicity of comprehending in order to further verify the acquired analytical findings.
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2050222 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:2:p:138-159
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2022.2050222
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().