Wall shear stress indicators influence the regular hemodynamic conditions in coronary main arterial diseases: cardiovascular abnormalities
M. Ferdows,
K. E. Hoque,
M.Z.I. Bangalee and
M. A. Xenos
Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 2, 235-248
Abstract:
Computational hemodynamic (CH) characteristics play a central role in the onset and expansion of atherosclerotic plaques in the coronary main arteries. This study has explored the effects of hemodynamic properties especially coronary arterial wall tangential stresses on various healthy and diseased patient-based coronary artery models based on coronary computed tomography angiography (CCTA) imaging. The key components of the work are the CCTA image acquisition, accurate three-dimensional (3 D) model segmentation, reconstruction, appropriate grid generation, CH simulations, and analysis of the results by using open-source techniques. The CH simulation results have produced hemodynamic variables, including velocity magnitude (VM), mean arterial pressure difference, wall shear stress (WSS), time-averaged WSS (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and finally, computational fractional flow reserve (cFFR), that allow the pathophysiological conditions in patient-based coronary models. The VM, mean pressure difference, and WSS indices have yielded consistent simulation results for predicting the severity conditions of coronary diseases. We have compared our cFFR results with the published results and observed that the WSS indices were a good alternative approach for measuring the severity of coronary lesions. The CH results allow a medical expert to estimate the severity of a lumen area and stenosis physiological blood flow conditions in a non-invasive way.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2054660 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:2:p:235-248
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2022.2054660
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().