EconPapers    
Economics at your fingertips  
 

Investigation of traffic accidents involving seated pedestrians using a finite element simulation-based approach

Daniel Grindle, Ahmed Balubaid and Costin Untaroiu

Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 4, 484-497

Abstract: Pedestrians who use wheelchairs (seated pedestrians) report 36% - 75% higher mortality rates than standing pedestrians in car-to-pedestrian collisions but the cause of this mortality is unknown. This is the first study to investigate the cause of seated pedestrian mortality in vehicle impacts using finite element simulations. In this study a manual wheelchair model was developed using geometry taken from publicly available CAD data, and was tested to meet ISO standards. The GHBMC 50th percentile male simplified occupant model was used as the seated pedestrian and the EuroNCAP family car and sports utility vehicle models were used as the impacting vehicles. The seated pedestrian was impacted by the two vehicles at three different locations on the vehicle and at 30 and 40 km/h. In 75% of the impacts the pedestrian was ejected from the wheelchair. In the rest of the impacts, the pedestrian and wheelchair were pinned to the vehicle and the pedestrian was not ejected. The underlying causes of seated pedestrian mortality in these impacts were head and brain injury. Life-threatening head injury risks (0.0% - 100%) were caused by the ground-pedestrian contact, and life-threatening brain injury risks (0.0 - 97.9%) were caused by the initial vehicle-wheelchair contact and ground-pedestrian contact. Thoracic and abdominal compression reported no risks of life-threatening injuries, but may do so in faster impacts or with different wheelchair designs. Protective equipment such as the wheelchair seatbelt or personal airbag may be useful in reducing injury risks but future research is required to investigate their efficacy.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2068349 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:4:p:484-497

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2022.2068349

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:4:p:484-497