EconPapers    
Economics at your fingertips  
 

Early detection of Parkinson disease using stacking ensemble method

Saroj Kumar Biswas, Arpita Nath Boruah, Rajib Saha, Ravi Shankar Raj, Manomita Chakraborty and Monali Bordoloi

Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 5, 527-539

Abstract: Parkinson’s disease (PD) is a common progressive neurodegenerative disorder that occurs due to corrosion of the substantianigra, located in the thalamic region of the human brain, and is responsible for the transmission of neural signals throughout the human body using brain chemical, termed as “dopamine.” Diagnosis of PD is difficult, as it is often affected by the characteristics of the medical data of the patients, which include the presence of various indicators, imbalance cases of patients’ data records, similar cases of healthy/affected persons, etc. Hence, sometimes the process of diagnosis may also be affected by human error. To overcome this problem some intelligent models have been proposed; however, most of them are single classifier-based models and due to this these models cannot handle noisy and imbalanced data properly and thus sometimes overfit the model. To reduce bias and variance, and to avoid overfitting of a single classifier-based model, this paper proposes an ensemble-based PD diagnosis model, named Ensembled Expert System for Diagnosis of Parkinson’s Disease (EESDPD) with relevant features and a simple stacking ensemble technique. The proposed EESDPD aggregates diverse assumptions for making the prediction. The performance of the proposed EESDPD is compared with the performances of logistic regression, SVM, Naïve Bayes, Random Forest, XGBoost, simple Decision Tree, B-TDS-PD and B-TESM-PD in terms of classification accuracy, precision, recall and F1-score measures.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2072683 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:5:p:527-539

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2022.2072683

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:5:p:527-539