Biomechanical effect of C5-C6 intervertebral disc degeneration on the human lower cervical spine (C3-C7): a finite element study
Waseem Ur Rahman,
Wei Jiang,
Fulin Zhao,
Zhijun Li,
Guohua Wang and
Guanghui Yang
Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 7, 820-834
Abstract:
The biomechanical effects of intervertebral discs and facet joints degeneration on the cervical spine are essential to understanding the mechanisms of spinal disorders to improve pathological and clinical treatment. In this study, the biomechanical effects of a progressively degenerated C5-C6 segment on the human lower cervical spine are determined by a detailed simulation of intervertebral disc degeneration. A detailed asymmetric three-dimension intact finite element model was developed using computed tomography scan data of the human lower cervical spine (C3-C7). The intact finite element model was then modified at the C5-C6 segment to build three degenerated models, such as mild, moderate, and severe degeneration. The physiological compressive load 73.6 N, and moment 1 Nm were applied at the superior endplate of the vertebra C3, and the inferior endplate of the C7 vertebra was a constraint for all degrees of freedom. Range of motion, maximum von Mises stress in the annulus, intradiscal pressure, and facet joint force of the degenerated models were computed. With progressive degeneration in the C5-C6 segment, the range of motion of degenerated and normal segments decreases in all postures. Intradiscal pressure of the degenerated segment decreases but increases in normal segments of degenerated segment C5-C6, and facet joint forces increase at both degenerated and normal segments. This study emphasizes that the degenerated disc alters the degenerated and normal segments' motion and loading patterns. The abnormal increase in facet joint force in the degenerated models threatened to accelerate the degeneration in the normal segments.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2089026 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:7:p:820-834
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2022.2089026
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().