EconPapers    
Economics at your fingertips  
 

OpenColab project: OpenSim in Google colaboratory to explore biomechanics on the web

Hossein Mokhtarzadeh, Fangwei Jiang, Shengzhe Zhao and Fatemeh Malekipour

Computer Methods in Biomechanics and Biomedical Engineering, 2023, vol. 26, issue 9, 1055-1063

Abstract: OpenSim is an open-source biomechanical package with a variety of applications. It is available for many users with bindings in MATLAB, Python, and Java via its application programming interfaces (APIs). Although the developers described well the OpenSim installation on different operating systems (Windows, Mac, and Linux), it is time-consuming and complex since each operating system requires a different configuration. This project aims to demystify the development of neuro-musculoskeletal modeling in OpenSim with zero configuration on any operating system for installation (thus cross-platform), easy to share models while accessing free graphical processing units (GPUs) on a web-based platform of Google Colab. To achieve this, OpenColab was developed where OpenSim source code was used to build a Conda package that can be installed on the Google Colab with only one block of code in less than 7 min. To use OpenColab, one requires a connection to the internet and a Gmail account. Moreover, OpenColab accesses vast libraries of machine learning methods available within free Google products, e.g. TensorFlow. Next, we performed an inverse problem in biomechanics and compared OpenColab results with OpenSim graphical user interface (GUI) for validation. The outcomes of OpenColab and GUI matched well (r≥0.82). OpenColab takes advantage of the zero-configuration of cloud-based platforms, accesses GPUs, and enables users to share and reproduce modeling approaches for further validation, innovative online training, and research applications. Step-by-step installation processes and examples are available at: https://simtk.org/projects/opencolab.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2022.2104607 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:26:y:2023:i:9:p:1055-1063

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2022.2104607

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:26:y:2023:i:9:p:1055-1063