A comprehensive review on heart disease prognostication using different artificial intelligence algorithms
A. Jainul Fathima and
M. M. Noor Fasla
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 11, 1357-1374
Abstract:
Prediction of heart diseases on time is significant in order to preserve life. Many conventional methods have taken efforts on earlier prediction but faced with challenges of higher prediction cost, extended time for computation and complexities with larger volume of data which reduced prediction accuracy. In order to overcome such pitfalls, AI (Artificial Intelligence) technology has been evolved in diagnosing heart diseases through deployment of several ML (Machine Learning) and DL (Deep Learning) algorithms. It improves detection by influencing with its capacity of learning from the massive data containing age, obesity, hypertension and other risk factors of patients and extract it accordingly to differentiate on the circumstances. Moreover, storage of larger data with AI greatly assists in analysing the occurrence of the disease from past historical data. Hence, this paper intends to provide a review on different AI based algorithms used in the heart disease prognostication and delivers its benefits through researching on various existing works. It performs comparative analysis and critical assessment as encompassing accuracies and maximum utilization of algorithms focussed by traditional studies in this area. The major findings of the paper emphasized on the evolution and continuous explorations of AI techniques for heart disease prediction and the future researchers aims in determining the dimensions that have attained high and low prediction accuracies on which appropriate research works can be performed. Finally, future research is included to offer new stimulus for further investigation of AI in cardiac disease diagnosis.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2319706 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:11:p:1357-1374
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2319706
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().