EconPapers    
Economics at your fingertips  
 

An unsupervised wavelet neural network model for approximating the solutions of non-linear nervous stomach model governed by tension, food and medicine

Arup Kumar Sahoo and S. Chakraverty

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 11, 1538-1551

Abstract: The human stomach is a complex organ. Its role is to degrade food particles by using mechanical forces and chemical reactions in order to release nutrients. All ingested items, including our nutrition, should first pass through the stomach, making it arguably the most crucial segment in the gastrointestinal tract. Computational and mathematical modeling of the stomach is an emerging field of biomechanics where several complex phenomena, such as solid mechanics of the gastric wall, gastric electrophysiology, and fluid mechanics of the digesta need to be addressed. Developing a meshfree comprehensive algorithm for solving the nervous stomach model that enables analysing the relationships between these phenomena remains one of the most significant challenges in biomechanics. This research dedicates to study the dynamics of nervous stomach model governed by a mathematical representation depending on three categories viz. Tension (T), Food (F) and Medicine (M), i.e. TFM model. In this regard, a machine learning paradigm, namely POLYnomial WinOwed with Gaussian (PolyWOG) Wavelet Neural Network (PWNN) model has been implemented for handling the non-linear TFM models. We compared the obtained outcomes of present work with results of a well-known numerical computing paradigm and an existing wavelet neural algorithm. Also, we have done statistical assessment studies at different testing points, which reveal that the proposed architecture is effective and accurate.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2248332 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:11:p:1538-1551

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2248332

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:11:p:1538-1551