EconPapers    
Economics at your fingertips  
 

Do lateral ankle ligaments contribute to syndesmotic stability: a finite element analysis study

Numan Mercan, Ahmet Yurteri and Yunus Dere

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 13, 1768-1780

Abstract: Whether the lateral ankle ligaments contribute to syndesmotic stability is still controversial and has been the subject of frequent research recently. In our study, we tried to elucidate this situation using the finite element analysis method. Intact model and thirteen different injury models were created to simulate injuries of the lateral ankle ligaments (ATFL, CFL, PTFL), injuries of the syndesmotic ligaments (AITFL, IOL, PITFL) and their combined injuries. The models were compared in terms of LFT, PFT and EFR. It was observed that 0.537 mm LFT, 0.626 mm PFT and 1.25° EFR occurred in the intact model (M#1), 0.539 mm LFT, 0.761 mm PFT and 2.31° EFR occurred in the isolated ATFL injury (M#2), 0.547 mm LFT, 0.791 mm PFT and 2.50° EFR occurred in the isolated AITFL injury (M#8). The LFT, PFT and EFR amounts were higher in the both M#2 and M#8 compared to the M#1. LFT, PFT and EFR amounts in M#2 and M#8 were found to be extremely close. In terms of LFT and PFT, when we compare models with (LFT: 0.650 mm, PFT: 1.104) and without (LFT: 0.457 mm, PFT: 1.150) IOL injury, it is seen that the amount of LFT increases and the amount of PFT decreases with IOL injury. We also observed that injuries to the CFL, PTFL and PITFL did not cause significant changes in fibular translations and PFT and EFR values show an almost linear correlation. Our results suggest that ATFL injury plays a crucial role in syndesmotic stability.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2258251 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:13:p:1768-1780

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2258251

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:13:p:1768-1780