An intelligent adverse delivery outcomes prediction model based on the fusion of multiple obstetric clinical data
Chen Zou,
Yichao Zhang and
Zhenming Yuan
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 13, 1817-1831
Abstract:
Adverse delivery outcomes is a major re-productive health problem that affects the physical and mental health of pregnant women. Obviously, obstetric clinical data has periodically time series characteristics. This paper proposed a three stage adverse delivery outcomes prediction model via the fusion of multiple time series clinical data. The first stage is data aggregation, in which the data set is collected from the obstetric clinical data and divided based on time series features. In the second stage, a multi-channel gated cycle unit is used to solve the calculation error caused by irregular sampling of time series data. The hidden layer feature vector is connected with the fully connected layer, reshaped into a new one-dimensional feature, and fused with the non-time series data into a new data set. The third stage is the prediction stage of adverse delivery outcomes. By connecting the multi-channel gated cycle unit with the extreme gradient lift, the data transmitted in the corresponding channel is used in the feature extraction stage, in which the weighted entropy-based feature extraction is adopted. With the help of the extracted features, a hybrid artificial neural network architecture (MGRU-XGB) was developed to predict adverse delivery outcomes. The experimental results showed that the hybrid model had the best prediction performance for adverse delivery outcomes compared with other single models in terms of sensitivity, specificity, AUC and other evaluation indexes.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2262663 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:13:p:1817-1831
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2262663
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().