EconPapers    
Economics at your fingertips  
 

Diagnosis of Parkinson’s disease based on voice signals using SHAP and hard voting ensemble method

Paria Ghaheri, Hamid Nasiri, Ahmadreza Shateri and Arman Homafar

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 13, 1858-1874

Abstract: Parkinson’s disease (PD) is the second most common progressive neurological condition after Alzheimer’s. The significant number of individuals afflicted with this illness makes it essential to develop a method to diagnose the conditions in their early phases. PD is typically identified from motor symptoms or via other Neuroimaging techniques. Expensive, time-consuming, and unavailable to the general public, these methods are not very accurate. Another issue to be addressed is the black-box nature of machine learning methods that needs interpretation. These issues encourage us to develop a novel technique using Shapley additive explanations (SHAP) and Hard Voting Ensemble Method based on voice signals to diagnose PD more accurately. Another purpose of this study is to interpret the output of the model and determine the most important features in diagnosing PD. The present article uses Pearson Correlation Coefficients to understand the relationship between input features and the output. Input features with high correlation are selected and then classified by the Extreme Gradient Boosting, Light Gradient Boosting Machine, Gradient Boosting, and Bagging. Moreover, the weights in Hard Voting Ensemble Method are determined based on the performance of the mentioned classifiers. At the final stage, it uses SHAP to determine the most important features in PD diagnosis. The effectiveness of the proposed method is validated using ‘Parkinson Dataset with Replicated Acoustic Features’ from the UCI machine learning repository. It has achieved an accuracy of 85.42%. The findings demonstrate that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson’s cases.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2263125 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:13:p:1858-1874

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2263125

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:13:p:1858-1874