Attention deficit hyperactivity disorder (ADHD) detection for IoT based EEG signal
J. Aarthy Suganthi Kani,
S. Immanuel Alex Pandian,
Anitha J and
R. Harry John Asir
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 16, 2269-2287
Abstract:
ADHD is a prevalent childhood behavioral problem. Early ADHD identification is essential towards addressing the disorder and minimizing its negative impact on school, career, relationships, as well as general well-being. The present ADHD diagnosis relies primarily on an emotional assessment which can be readily influenced by clinical expertise and lacks a basis of objective markers. In this paper, an innovative IoT based ADHD detection is proposed using an EEG signal. To the input EEG signal, the min-max normalization technique is processed. Features are extracted as the subsequent step, where improved fuzzy feature, in which the entropy is estimated to increase the effectiveness of recognizing the vector along with, fractal dimension, wavelet transform and non-linear features are extracted. Also, proposes the new hybrid PUDMO algorithm to select the optimal features from the extracted feature set. Subsequently, the selected features are fed to the proposed hybrid detection system that including IDBN and LSTM classifier to detect whether it is ADHD or not. Further, the weights of both classifiers are tuned optimally as per the hybrid PUDMO algorithm to enhance the detection performance. The PUDMO achieved an accuracy of 0.9649 in the best statistical metric, compared to the SLO's 0.8266, SOA's 0.8201, SMA's 0.8060, BRO's 0.8563, DE's 0.8083, POA's 0.8537, and DMOA's 0.8647, respectively. Thus, the assessments and detection help the clinicians to take appropriate decision.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2399025 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:16:p:2269-2287
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2399025
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().