Atherosclerosis risk assessment in human carotid artery with variation in sinus length: a numerical approach
Jinmay Kalita,
Subham Show,
Nirmalendu Biswas and
Aparesh Datta
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 16, 2288-2302
Abstract:
The mortality rates due to cardiovascular diseases are on a rise globally. One of the major cardiovascular diseases is stroke which occurs due to atherosclerotic plaques build-up in the carotid artery. The common carotid artery (CCA) bifurcates into the internal carotid artery (ICA) and external carotid artery (ECA). Sinus present at ICA is an ellipsoidal-shaped dilated region acting as a pressure receptor and blood flow regulator. Dimensions of the sinus vary from person to person, affecting the hemodynamics of the carotid artery. The current numerical study manifests a 3D flow analysis by varying the sinus length to investigate its local and global effects on the hemodynamics of the carotid artery using various biomechanical risk analysis parameters of atherosclerosis. User-defined function (UDF) dictates the pulsatile flow velocity profile imposed at the inlet. Near the outer wall (OW) of the sinus, the blood flow velocities are lower and recirculation zones are more. Though the recirculation zones for shorter sinus will be close to the inner wall (IW), interestingly, with an increase in the sinus length, the recirculation zones shift toward the OW with higher strength. These significantly decrease the x-wall shear stress (x-WSS) and time-averaged wall shear stress (TAWSS) values on the OW of the longer sinus. The other risk analysis parameters, like oscillatory shear index (OSI) and relative residence time (RRT), support the described consequences. These results reveal that sinus of increased length is more prone to developing atherosclerotic plaque.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2275546 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:16:p:2288-2302
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2275546
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().