An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data
P. Vanmathi and
Deepa Jose
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 1, 98-115
Abstract:
Breast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system’s efficiency.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2280883 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:1:p:98-115
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2280883
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().