EconPapers    
Economics at your fingertips  
 

Exhaled breath signal analysis for diabetes detection: an optimized deep learning approach

Anita Gade, V. Vijaya Baskar and John Panneerselvam

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 4, 443-458

Abstract: In this study, a flexible deep learning system for breath analysis is created using an optimal hybrid deep learning model. To improve the quality of the gathered breath signals, the raw data are first pre-processed. Then, the most relevant features like Improved IMFCC, BFCC (bark frequency), DWT, peak detection, QT intervals, and PR intervals are extracted. Then, using these features the hybrid classifiers built into the diabetic’s detection phase is trained. The diabetic detection phase is modeled with an optimized DBN and BI-GRU model. To enhance the detection accuracy of the proposed model, the weight function of DBN is fine-tuned with the newly projected Sine Customized by Marine Predators (SCMP) model that is modeled by conceptually blending the standard MPA and SCA models, respectively. The final outcome from optimized DBN and Bi-GRU is combined to acquire the ultimate detected outcome. Further, to validate the efficiency of the projected model, a comparative evaluation has been undergone. Accordingly, the accuracy of the proposed model is above 98%. The accuracy of the proposed model is 54.6%, 56.9%, 56.95, 44.55, 57%, 56.95, 18.2%, and 56.9% improved over the traditional models like CNN + LSTM, CNN + LSTM, CNN, LSTM, RNN, SVM, RF, and DBN, at 60th learning percentage.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2289344 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:4:p:443-458

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2289344

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:4:p:443-458