Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields
Hao Wang,
Jiaming Wang,
Linwei Lyu,
Shuping Wei and
Chunqiu Zhang
Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 4, 478-488
Abstract:
The bone lacunar-canalicular system (LCS) is a unique complex 3D microscopic tubular network structure within the osteon that contains interstitial fluid flow to ensure the efficient transport of signaling molecules, nutrients, and wastes to guarantee the normal physiological activities of bone tissue. The mass transfer laws in the LCS under microgravity and hypergravity are still unclear. In this paper, a multi-scale 3D osteon model was established to mimic the cortical osteon, and a finite element method was used to numerically analyze the mass transfer in the LCS under hypergravity, normal gravity and microgravity and combined with high-intensity exercise conditions. It was shown that hypergravity promoted mass transfer in the LCS to the deep lacunae, and the number of particles in lacunae increased more significantly from normal gravity to hypergravity the further away from the Haversian canal. The microgravity environment inhibited particles transport in the LCS to deep lacunae. Under normal gravity and microgravity, the number of particles in lacunae increased greatly when doing high-intensity exercise compared to stationary standing. This paper presents the first simulation of mass transfer within the LCS with different gravity fields combined with high-intensity exercise using the finite element method. The research suggested that hypergravity can greatly promote mass transfer in the LCS to deep lacunae, and microgravity strongly inhibited this mass transfer; high-intensity exercise increased the mass transfer rate in the LCS. This study provided a new strategy to combat and treat microgravity-induced osteoporosis.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2187738 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:4:p:478-488
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2023.2187738
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().