EconPapers    
Economics at your fingertips  
 

A novel mathematical model of the badminton smash: simulation and modeling in biomechanics

Valentinus Galih Vidia Putra, Irwan and Juliany Ningsih Mohamad

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 4, 538-545

Abstract: Applied physics and computer methods in biomechanics have been extensively used in sports science research, including performance and biomechanics analysis. The Brachistochrone problem, which expresses the curve that an object draws quickly under gravitational forces in a vertical position, is one of the most widely used studies in classical mechanics. A similar problem arises when a badminton player intends to hit a smash with the shortest shot time. This paper aims to determine the optimal stroke trajectory for a shuttlecock smash in the shortest time. We simulate the badminton smash movement using a computer program after analyzing the shuttlecock smash analytically and numerically for several conditions. The modeling results show that a cycloid trajectory allows badminton players to smash the shuttlecock in the shortest time. Based on the experimental findings of Tsai, Huang, and Jih’s study and our models, the ratio of clear speed to smash speed is 0.75, which is still in the range of 0.71 to 0.76, and we find that a cycloid trajectory gives the shortest shuttlecock smash time. We concluded that the experimental data from this study’s literature supported our model. The novelty of this study is that we found the first powerful model and simulation of conventional Brachistochrone in the case of a badminton smash of badminton players. For badminton coaches and players, this model formulation is intended as a reference for optimizing shuttlecock shots. Furthermore, another novelty of this research is that it may lead to software that can be used to analyze the muscle strength of badminton players based on their cycloid hand trajectory and shuttlecock speed.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2190439 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:4:p:538-545

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2190439

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:4:p:538-545