EconPapers    
Economics at your fingertips  
 

Estimation of non-alcoholic steatohepatitis (NASH) disease using clinical information based on the optimal combination of intelligent algorithms for feature selection and classification

Hamed Zamanian and Ahmad Shalbaf

Computer Methods in Biomechanics and Biomedical Engineering, 2024, vol. 27, issue 8, 964-979

Abstract: The early diagnosis of NASH disease can decrease the risk of proceeding elements and treatment costs for patients. This study aims to present an optimal combination of intelligent algorithms using advanced machine learning methods, including different feature selections and classifications based on clinical data and blood factors. In this work, collected data were from 176 patients to investigate NASH disease, and 19 features were extracted. We then sought to find the best combination of features based on different feature selection algorithms such as Feature Forward Selection (FFS), Minimum Redundancy Maximum Relevance (MRMR), and Mutual Information (MI). Finally, we used nine classifier frameworks with different mathematical mechanisms, including random forest (RF), logistic regression (LR), Linear Discriminant Analysis (LDA), AdaBoost, K nearest neighbors (KNN), multilayer perceptron model (MLP), support vector machine (SVM), and decision tree (DT) to estimate NASH disease. Our investigation revealed that the combination of dominant features, namely body mass index (BMI), glutamic pyruvic transaminase (GPT), total cholesterol (TC), high-density lipoprotein (HDL), Ezetimibe, lipoprotein level Lp(a), Loge(Lp(a)), total triglyceride (TG), Creatinine (Cre), HbA1c, Fibrate, and Sex, selected by the MRMR algorithm and classified by the RF method can provide the most appropriate performance based on less computation effort and maximum performance with accuracy, AUC, precision, and recall indices, which are 81.51±9.35, 82.53±11.24, 85.28±9.68, and 89.49±7.92, respectively. This study investigated the configuration of feature selection and classifier that is most suitable for classifying NASH disease based on clinical data and blood factors. The proposed intelligent algorithm based on MRMR and RF classifier can automatically diagnose NASH disease with appropriate performance and present an initial report without any further invasive methods. It also clarifies the diagnostic process and, as a result, the continuation of their prevention and treatment cycle.

Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2023.2217978 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:27:y:2024:i:8:p:964-979

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2023.2217978

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:gcmbxx:v:27:y:2024:i:8:p:964-979