EconPapers    
Economics at your fingertips  
 

A robust deep learning system for screening of obstructive sleep apnea using T-F spectrum of ECG signals

Kapil Gupta

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 14, 2137-2149

Abstract: Obstructive sleep apnea (OSA) is a non-communicable sleep-related medical condition marked by repeated disruptions in breathing during sleep. It may induce various cardiovascular and neurocognitive complications. Electrocardiography (ECG) is a useful method for detecting numerous health-related disorders. ECG signals provide a less complex and non-invasive solution for the screening of OSA. Automated and accurate detection of OSA may enhance diagnostic performance and reduce the clinician’s workload. Traditional machine learning methods typically involve several labor-intensive manual procedures, including signal decomposition, feature evaluation, selection, and categorization. This article presents the time-frequency (T-F) spectrum classification of de-noised ECG data for the automatic screening of OSA patients using deep convolutional neural networks (DCNNs). At first, a filter-fusion algorithm is used to eliminate the artifacts from the raw ECG data. Stock-well transform (S-T) is employed to change filtered time-domain ECG into T-F spectrums. To discriminate between apnea and normal ECG signals, the obtained T-F spectrums are categorized using benchmark Alex-Net and Squeeze-Net, along with a less complex DCNN. The superiority of the presented system is measured by computing the sensitivity, specificity, accuracy, negative predicted value, precision, F1-score, and Fowlkes-Mallows index. The results of comparing all three utilized DCNNs reveal that the proposed DCNN requires fewer learning parameters and provides higher accuracy. An average accuracy of 95.31% is yielded using the proposed system. The presented deep learning system is lightweight and faster than Alex-Net and Squeeze-Net as it utilizes fewer learnable parameters, making it simple and reliable.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2359635 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:14:p:2137-2149

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2024.2359635

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-11-05
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:14:p:2137-2149