Effectiveness of nanoparticle-based antimicrobial agents in the prevention and treatment of Central Venous Catheter-Associated Bloodstream Infections
Qianqian Cao and
Yun Wang
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 7, 1021-1033
Abstract:
BackgroundIn healthcare settings, Central Venous Catheter-Associated Bloodstream Infections (CVC-BSIs) present a serious problem since they raise morbidity, mortality, and medical expense rates. The management of these illnesses is made more challenging by the development of antimicrobiotic resistance. Nanotechnology has attracted interest recently as a viable method for creating new antimicrobial agents. By putting antibacterial nanomaterials onto the catheter’s appear, that may reduce the likelihood of getting sick by stopping germs from adhering and growing. Antimicrobial additives can be released gradually finishes, protecting over time through bioengineering sectors. To prevent and treat CVC-BSIs, this study will assess the efficacy of antimicrobial medicines based on nanoparticles.MethodsIn the network Meta-Analyses (MA) and Systematic Review (SR), we looked for studies published from January 2010 to September 2021 using the Cochrane Central Register of Controlled Trials (CENTRAL), EMBASE, MEDLINE, CINAHL, and Web of Science databases. Ten papers in all were included in the review following the screening of the publications using inclusion and exclusion criteria.ResultsIn contrast to conventional catheters, the implementation of Antimicrobial Catheters (AC) and the use of chlorhexidine (CHG) or Silver Sulfadiazine (SS) demonstrated notably reduced occurrences of Central Venous Catheter-Associated Bloodstream Infections (CVC-BSIs) per 1000 Catheter Days (CD) (with Odds Ratios (ORs) and 95% Credibility Intervals (CrIs) of 0.66 and 0.54, respectively) by bioengineering sectors. Moreover, these interventions were linked to the lowest rate of Catheter Colonization (CC), with ORs as well as 95% CrIs of 0.45 and 0.31, respectively, underscoring their potential as effective strategies for minimizing the risk of infections associated with catheter use as well as bioengineering sectors innovations.ConclusionsAs a result, CVC-BSI has shown significant promise for prevention and treatment with nanoparticle-based antimicrobial medicines. Due to their special characteristics and modes of action, they are strong candidates for improving the security and effectiveness of central venous catheter use in clinical settings. Due to ongoing research and development in this area, nanoparticle-based coatings and therapies may be used to lessen the impact of CVC-BSIs and enhance patient outcomes.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2310076 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:7:p:1021-1033
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2310076
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().