EconPapers    
Economics at your fingertips  
 

Impact of radiation therapy on healthy and cancerous cell dynamics: a Mathematical analysis

F. A. Zargar, M. A. Khanday, Mudasir Ashraf and R. Bhat

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 7, 985-995

Abstract: This study proposes a novel therapeutic model for cancer treatment with radiation therapy by analyzing the interactions among cancer, immune and healthy cells through a system of three ordinary differential equations. In this model, the natural influx rate of mature immune cells is assumed constant and is denoted by, a. The overall effect of radiation therapy on cancer cells is represented by a parameter, s; which is the surviving fraction of cells as determined by the Linear Quadratic (LQ) model. Conditions for the stability of equilibria in the interaction model modified to include the surviving fraction, are systematically established in terms of the dose and model parameters. Numerical simulations are performed in Wolfram MATHEMATICA software, investigating a spectrum of initial cell population values irradiated with 60Co γ-ray Low-LET radiation and High-LET 165 keV/μm Ni-ion radiation to facilitate improved visualization and in-depth analysis. By analyzing the model, this study identifies threshold values for the absorbed dose D for particular values of the model and radiation parameters for both High Linear Energy Transfer (high-LET) and Low Linear Energy Transfer (low-LET) radiations that ensure either eradication or minimization of cancer cells from a patient’s body, providing valuable insights for designing effective cancer treatments.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2308700 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:7:p:985-995

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2024.2308700

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-06-03
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:7:p:985-995