Hybrid optimized temporal convolutional networks with long short-term memory for heart disease prediction with deep features
M Balamurugan and
Dr. S. Meera
Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 7, 996-1020
Abstract:
A heart attack is intended as top prevalent among all ruinous ailments. Day by day, the number of affected people count is increasing globally. The medical field is struggling to detect heart disease in the initial step. Early prediction can help patients to save their life. Thus, this paper implements a novel heart disease prediction model with the help of a hybrid deep learning strategy. The developed framework consists of various steps like (i) Data collection, (ii) Deep feature extraction, and (iii) Disease prediction. Initially, the standard medical data from various patients are acquired from the clinical standard datasets. Here, a One-Dimensional Convolutional Neural Network (1DCNN) is utilized for extracting the deep features from the acquired medical data to minimize the number of redundant data from the gathered large-scale data. The acquired deep features are directly fed to the Hybrid Optimized Deep Classifier (HODC) with the integration of Temporal Convolutional Networks (TCN) with Long Short-Term Memory (LSTM), where the parameters in both classifiers are optimized using the newly suggested Enhanced Forensic-Based Investigation (EFBI) inspired meta-optimization algorithm. Throughout the result analysis, the accuracy and precision rate of the offered approach is 98.67% and 99.48%. The evaluation outcomes show that the recommended system outperforms the extant systems in terms of performance metrics examination.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2310075 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:7:p:996-1020
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20
DOI: 10.1080/10255842.2024.2310075
Access Statistics for this article
Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton
More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().