EconPapers    
Economics at your fingertips  
 

Vibration modes of three-dimensional spiral cochlea covering the organ of Corti

Mianzhi Wang, Jiakun Wang, Junyi Liang and Wenjuan Yao

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 8, 1154-1163

Abstract: So far, explaining the mechanism on active phonosensitive amplification in the cochlea is a major and difficult medical question. Among them, one of the key problems is that the motion pattern of the organ of Corti (OC) is still unknown. To this end, a multi-scale cochlear model including a three-dimensional spiral OC was established based on CT data and light source imaging experimental data, which complete combined the macroscopic and microscopic structure. On the basis of verifying the reliability of the model, acoustic-solid coupling calculation and modal analysis were performed on the model, and the vibration modes of basilar membrane (BM) and structures of the OC at different characteristic frequencies were discussed. The results show that tectorial membrane (TM) exhibits completely different vibration modes from BM at low frequencies, while the two movements gradually synchronize as the frequency increases. The amplitude position of OC’s motion moves laterally with increasing frequency from Deiters’ cells to Hensen’s cells and then back to Deiters’ cells. The OC exhibits longitudinal vibrations following BM when BM’s displacement is large, while it manifests more as lateral movement of Deiters’ cells when BM’s displacement is small. This model can well simulate the motion process of BM and OC in the lymphatic fluid, which provides theoretical support and a numerical simulation computational platform to explore the interaction between macroscopic and microscopic tissue structures of the overall cochlea.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2313065 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1154-1163

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2024.2313065

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1154-1163