EconPapers    
Economics at your fingertips  
 

A relationship of tightening torque and initial load of dental implant of nano bio-silica and bamboo fiber-reinforced bio-composite material

Sambhrant Srivastava and Saroj Kumar Sarangi

Computer Methods in Biomechanics and Biomedical Engineering, 2025, vol. 28, issue 8, 1280-1294

Abstract: Due to entry of body fluid like saliva, blood, etc. in the dental implant assembly lowers the preload value, thus dental implant abutment tightening torque loses. In this article a novel chitosan-reinforced bamboo and nano bio-silica-reinforced five composite materials (CP, CF, C1, C2, and C3) are fabricated using the hand layup method, and their mechanical, biocompatible, and moisture absorption properties are observed and discussed. The present study examines the impact of friction and Young’s modulus on the correlation between torque and starting load in dental implant abutment screws, utilizing the attributes of a bio-composite material. C2 bio-composite composite material exhibits the highest tensile strength (139.442 MPa), flexural strength (183.571 MPa), compressive strength (62.78 MPa), and a minimum value of 1.35% absorption of water. C3 is tested with no cytotoxicity, while C3 and CF exhibit weak biofilm resistance against S. aureus gram-positive bacteria. The C2 bio-composite material demonstrated a maximum initial load of 20 N with a tightening torque of 20 N-cm, under both 0.12 and 0.16 coefficients of friction. The simulated results were compared with several theoretical relations of torque and initial load and found that the Motos equation holds the nearest result to the obtained preload value from finite element analysis. Overall, the experimental findings suggest that the C2 bio-composite material holds significant potential as a prominent material for dental implants or fixtures.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/10255842.2024.2320750 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1280-1294

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/gcmb20

DOI: 10.1080/10255842.2024.2320750

Access Statistics for this article

Computer Methods in Biomechanics and Biomedical Engineering is currently edited by Director of Biomaterials John Middleton

More articles in Computer Methods in Biomechanics and Biomedical Engineering from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-07-02
Handle: RePEc:taf:gcmbxx:v:28:y:2025:i:8:p:1280-1294