The delta-corrected Kolmogorov-Smirnov test for the two-parameter Weibull distribution
H. J. Khamis
Journal of Applied Statistics, 1997, vol. 24, issue 3, 301-318
Abstract:
Monte Carlo simulation techniques are used to create tables of critical values for the delta-corrected Kolmogorov-Smirnov statistic-a modification of the classical Kolmogorov-Smirnov statistic-for the Weibull distribution with known location parameter and unknown shape and scale parameters. The power of the proposed test is investigated relative to values of delta in the unit interval and relative to a wide variety of alternative distributions. The results indicate that using the delta-correction can lead to as many as 8.4 percentage points more power than can be achieved with the classical Kolmogorov-Smirnov test, with no change in the size of the test. Furthermore, carrying out the delta-corrected test involves no more steps or calculations than for the classical Kolmogorov-Smirnov test. In general, it is shown that a slight modification-or correction-in the definition of the empirical distribution function of the Kolmogorov-Smirnov test can lead to power enhancement without changing the type I error rate of the test. Two examples clearly show the effectiveness of the delta-corrected test. The delta-corrected Kolmogorov-Smirnov test is recommended for testing the goodness of fit to the twoparameter Weibull distribution.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769723701 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:24:y:1997:i:3:p:301-318
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769723701
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().