Estimating time to detect time trends in continuous cropping
Murari Singh and
Michael Jones
Journal of Applied Statistics, 1997, vol. 24, issue 6, 659-670
Abstract:
In long-term field trials comparing different sequences of crops and husbandry practices, the identification and understanding of trends in productivity over time is an important issue of sustainable crop production. This paper presents a statistical technique for the estimation of time trends in yield variables of a seasonal annual crop under continuous cropping. The estimation procedure incorporates the correlation structure, which is assumed to follow first-order autocorrelation in the errors that arise over time on the same plot. Because large differences in annual rainfall have a major effect on crop performance, rainfall has been allowed for in the estimation of the time trends. Expressions for the number of years (time) required to detect statistically significant time trends have been obtained. Illustrations are based on a 7-year data set of grain and straw yields from a trial in northern Syria. Although agronomic interpretation is not intended in this paper, the barley yield data indicated that a significant time trend can apparently be detected even in a suboptimal data set of 7 years' duration.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769723404 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:24:y:1997:i:6:p:659-670
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769723404
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().