Probability models on horse-race outcomes
Mukhtar Ali
Journal of Applied Statistics, 1998, vol. 25, issue 2, 221-229
Abstract:
A number of models have been examined for modelling probability based on rankings. Most prominent among these are the gamma and normal probability models. The accuracy of these models in predicting the outcomes of horse races is investigated in this paper. The parameters of these models are estimated by the maximum likelihood method, using the information on win pool fractions. These models are used to estimate the probabilities that race entrants finish second or third in a race. These probabilities are then compared with the corresponding objective probabilities estimated from actual race outcomes. The data are obtained from over 15 000 races. it is found that all the models tend to overestimate the probability of a horse finishing second or third when the horse has a high probability of such a result, but underestimate the probability of a horse finishing second or third when this probability is low.
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769823205 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:25:y:1998:i:2:p:221-229
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769823205
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().