Forecasting electricity consumption with extra-model information provided by consumers
Victor Guerrero and
Edmundo Berumen
Journal of Applied Statistics, 1998, vol. 25, issue 2, 283-299
Abstract:
Univariate time series models make efficient use of available historical records of electricity consumption for short-term forecasting. However, the information (expectations) provided by electricity consumers in an energy-saving survey, even though qualitative, was considered to be particularly important, because the consumers' perception of the future may take into account the changing economic conditions. Our approach to forecasting electricity consumption combines historical data with expectations of the consumers in an optimal manner, using the technique of restricted forecasts. The same technique can be applied in some other forecasting situations in which additional information-besides the historical record of a variable-is available in the form of expectations.
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769823269 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:25:y:1998:i:2:p:283-299
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769823269
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().