EconPapers    
Economics at your fingertips  
 

Analysis of tidal data via the blockwise bootstrap

Michael Sherman, F. Michael Speed and F. Michael Speed

Journal of Applied Statistics, 1998, vol. 25, issue 3, 333-340

Abstract: We analyze tidal data from Port Mansfield, TX, using Kunsch's blockwise bootstrap in the regression setting. In particular, we estimate the variability of parameter estimates in a harmonic analysis via block subsampling of residuals from a least-squares fit. We see that naive least-squares variance estimates can be either too large or too small, depending on the strength of correlation and the design matrix. We argue that the block bootstrap is a simple, omnibus method of accounting for correlation in a regression model with correlated errors.

Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769823061 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:25:y:1998:i:3:p:333-340

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664769823061

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:25:y:1998:i:3:p:333-340