EconPapers    
Economics at your fingertips  
 

Parametric versus semi-parametric models for the analysis of correlated survival data: A case study in veterinary epidemiology

M. M. Shoukri, M. Attanasio and J. M. Sargeant

Journal of Applied Statistics, 1998, vol. 25, issue 3, 357-374

Abstract: Correlated survival data arise frequently in biomedical and epidemiologic research, because each patient may experience multiple events or because there exists clustering of patients or subjects, such that failure times within the cluster are correlated. In this paper, we investigate the appropriateness of the semi-parametric Cox regression and of the generalized estimating equations as models for clustered failure time data that arise from an epidemiologic study in veterinary medicine. The semi-parametric approach is compared with a proposed fully parametric frailty model. The frailty component is assumed to follow a gamma distribution. Estimates of the fixed covariates effects were obtained by maximizing the likelihood function, while an estimate of the variance component ( frailty parameter) was obtained from a profile likelihood construction.

Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769823098 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:25:y:1998:i:3:p:357-374

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664769823098

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:25:y:1998:i:3:p:357-374