Direct estimation of the percentile 'p-value' for the one-sample median test
Alan Hutson
Journal of Applied Statistics, 1998, vol. 25, issue 4, 525-533
Abstract:
In this paper we outline and illustrate an easy-to-use inference procedure for directly calculating the approximate bootstrap percentile-type p-value for the one-sample median test, i.e. we calculate the bootstrap p -value without resampling, by using a fractional order statistics based approach. The method parallels earlier work on fractionalorder-statistics-based non-parametric bootstrap percentile-type confidence intervals for quantiles. Monte Carlo simulation studies are performed, which illustrate that the fractional-order-statistics-based approach to the one-sample median test has accurate type I error control for small samples over a wide range of distributions; is easy to calculate; and is preferable to the sign test in terms of type I error control and power. Furthermore, the fractional-order-statistics-based median test is easily generalized to testing that any quantile has some hypothesized value; for example, tests for the upper or lower quartile may be performed using the same framework.
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769822990 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:25:y:1998:i:4:p:525-533
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769822990
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().