General formulae for expectations, variances and covariances of the mean squares for staggered nested designs
Yoshikazu Ojima
Journal of Applied Statistics, 1998, vol. 25, issue 6, 785-799
Abstract:
Staggered nested experimental designs are the most popular class of unbalanced nested designs. Using a special notation which covers the particular structure of the staggered nested design, this paper systematically derives the canonical form for the arbitrary m-factors. Under the normality assumption for every random variable, a vector comprising m canonical variables from each experimental unit is normally independently and identically distributed. Every sum of squares used in the analysis of variance (ANOVA) can be expressed as the sum of squares of the corresponding canonical variables. Hence, general formulae for the expectations, variances and covariances of the mean squares are directly obtained from the canonical form. Applying the formulae, the explicit forms of the ANOVA estimators of the variance components and unbiased estimators of the ratios of the variance components are introduced in this paper. The formulae are easily applied to obtain the variances and covariances of any linear combinations of the mean squares, especially the ANOVA estimators of the variance components. These results are eff ectively applied for the standardization of measurement methods.
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664769822774 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:25:y:1998:i:6:p:785-799
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664769822774
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().